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Abstract 17 

Developing Species Distribution Models (SDM) for marine exploited species is a major challenge in fisheries 18 

ecology. Classical modelling approaches typically rely on fish research surveys data. They benefit from a 19 

standardized sampling design and a controlled catchability, but they usually occur once or twice a year and 20 

may sample a relatively small number of spatial locations. Spatial monitoring of commercial data (based on 21 

logbooks crossed with Vessel Monitoring Systems) can provide an additional extensive data source to 22 

inform fish spatial distribution. We propose a spatial hierarchical framework integrating both data sources 23 

while accounting for preferential sampling (PS) of commercial data. From simulations, we demonstrate PS 24 

should be accounted for in estimation when PS is actually strong. When commercial data far exceed 25 

scientific data, the later bring little information to spatial predictions in the areas sampled by commercial 26 

data, but bring information in areas with low fishing intensity and provide a validation dataset to assess the 27 

integrated model consistency. We applied the framework to three demersal species (hake, sole, and squids) 28 

in the Bay of Biscay that emphasize contrasted PS intensity and we demonstrate that the framework can 29 

account for several fleet with varying catchabilities and PS behaviors. 30 

Keywords: Species distribution model, integrated modelling, Hierarchical model, VMS and logbook data, 31 

survey data, Template Model Builder (TMB)  32 
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1 INTRODUCTION 33 
Developing species distribution models (SDM) is critical in marine and fisheries ecology 34 

for assessing the relationship between species and their habitat (Guisan and 35 

Zimmermann, 2000), identifying essential habitats (Paradinas et al., 2015), forecasting 36 

population and ecosystems response to environmental changes (Cheung et al., 2009). 37 

The development of statistical models to predict fishery resources distribution has 38 

received considerable attention (Planque et al., 2011; Thorson et al., 2015a, 2015b; 39 

Martínez-Minaya et al., 2018; Moriarty et al., 2020). Recent developments have 40 

generalized SDM to analyze biological data representing condition, stomach contents, 41 

size structure, and other  demography and population dynamics features (Thorson, 2015; 42 

Grüss et al., 2020). Ongoing research also seek to integrate individual movement, growth, 43 

species interactions into SDM (Kristensen et al., 2014; Thorson et al., 2017a, 2019), 44 

although these approaches are “data hungry” and therefore require integrating different 45 

sources of data within a single model. 46 

Scientific survey and commercial catch data consist in two potentially complementary data 47 

sources to estimate harvested fish spatial distribution (Pennino et al., 2016). Scientific 48 

surveys are key data sources in fisheries ecology. They most often benefit from a 49 

standardized sampling plan and a constant catchability (Hilborn and Walters, 1992; Ocean 50 

Studies Board and National Research Council, 2000; ICES, 2005; Nielsen, 2015). They 51 

are generally designed to cover the full geographical extent of specific populations 52 

including areas of low or null abundance, and are thus adapted to develop unbiased 53 

abundance indices and spatial predictions of species distribution (Rivoirard et al., 2008; 54 

ICES, 2012). In addition, they often seek to minimize selectivity in order to sample as 55 

many species, size groups and life stages as possible. However, the related expansive 56 
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charges generally comes at the cost of a relatively low sampling density in space and/or 57 

time. For instance, trawl survey can sample a limited number of spatial locations, and 58 

most often occur once or twice a year. Thus, they may provide poor information regarding 59 

intra-annual variability (Pennino et al., 2016; Rufener et al., 2021) and imprecise estimates 60 

of species abundance and distribution (ICES, 2005). 61 

Commercial catch declarations (logbooks) data constitute a complementary data source 62 

that may benefit of a higher sampling effort than scientific survey. In Europe, catch 63 

declarations must be reported in logbooks data for all fishing vessels; besides, geolocation 64 

through Vessel Monitoring System (VMS) is mandatory for all fishing boat above 12m long 65 

(Hintzen, 2021). Hence, logbook data combined with VMS data can provide high 66 

resolution maps of Catch Per Unit Effort (CPUE - Gerritsen and Lordan, 2010; Murray et 67 

al., 2013) with a relatively dense spatio-temporal sampling within the range of the 68 

commercial fleets. However, inferring SDM with commercial data can be challenging as 69 

they generally arise from a preferential sampling (PS) behavior, i.e. a sampling that 70 

directly or indirectly depends upon the biomass of the target species. Indeed, fishermen 71 

tend to target areas with high biomass or may also favor fishing zones based on other 72 

criteria (like bottom substrate or distance to the coast for instance - Hintzen et al., 2021) 73 

that are indirectly related to the target species abundance. When not properly considered 74 

in statistical models, PS associated with commercial data may lead to biased estimates 75 

of fish distribution and biomass (Trenkel et al., 2013; Pennino et al., 2019). In particular, 76 

when the biomass is spatially heterogeneous, ignoring PS may overestimate the spatial 77 

predictions and the overall biomass estimates.  78 

Recent research has tackled this challenge and proposed methods to account for PS in 79 

statistical inferences. Model based PS was first introduced in a statistical context by Diggle 80 
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et al. (2010). The authors extended a standard geostatistical approach within a 81 

hierarchical framework where the variable of interest is modeled as a latent field, with both 82 

direct observations and the local intensity of the sampling effort that depend on the latent 83 

field. More specifically, the sampling process is modelled as an inhomogeneous Poisson 84 

point process whose intensity directly depends on the latent field values. This approach 85 

was extended by Pati et al. (2011) who introduced covariates and random effects in the 86 

model. Conn et al. (2017) followed the same ideas and developed a more generic model 87 

for ecological applications, which they applied to aerial seal count data. Pennino et al. 88 

(2019) applied similar ideas to infer the distribution of shrimps from onboard fishery data.  89 

Provided PS is accounted for, integrated models (IM) appear as an attractive tool to 90 

combine fishery-independent and fishery-dependent data to infer harvested fish spatial 91 

distribution. IM have received considerable attention in the ecological literature (Schaub 92 

and Abadi, 2011; Parent and Rivot, 2012; Gimenez et al., 2014). By sharing the 93 

information between different data types, IM may provide more accurate estimates and 94 

predictions compared with separate analysis of different data types. Recently, Rufener et 95 

al. (2021) demonstrated the potential of IM to integrate scientific data and onboard 96 

observer count data to improve SDM of fishery resources. However, although onboard 97 

observer data provide useful complementary information to scientific survey, they 98 

generally only represent a small proportion of all sea trips (1% in average for the French 99 

observer programs - Cornou et al., 2021). By contrast, the combination of commercial 100 

catch declarations in logbooks with VMS data provides a more extensive data source to 101 

map fish spatial distribution. Furthermore, the potential of embedding PS within a 102 

hierarchical SDM to integrate catch declaration data and scientific survey is still an open 103 

challenge and new methodology are required to handle PS behaviors of commercial fleets 104 
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while accounting for all the complexity related to fishing locational choice (Salas and 105 

Gaertner, 2004; Haynie et al., 2009; Girardin et al., 2017). 106 

In this paper, we develop an IM model to infer fish spatial distribution by combining both 107 

scientific and commercial catch declaration data while taking into account the PS induced 108 

by fishing targeting behavior.  109 

To assess the challenges, the benefits but also the limits of the approach, we evaluate 110 

the performance of our IM based on simulated data. Simulations are primarily designed 111 

to assess the respective contribution of each data source to inference for different model 112 

configurations. We first evaluate how the balance between the commercial and scientific 113 

sample sizes affect the model outputs. Because the commercial data may often only 114 

partially cover the distribution area of a targeted species, we assess how this issue may 115 

affect the quality of estimation and how scientific data may contribute to reduce the effect 116 

of this gap in the commercial data. Introducing PS within an IM framework involves 117 

conditioning results upon structural hypotheses and then increases the computational 118 

cost. We therefore assess how perform a more parsimonious model that would ignore PS. 119 

Last, in addition to the PS, the fishing locations can be controlled by other factors 120 

independent from the species distribution (e.g. logistical constraints – see Girardin et al., 121 

2017; Ducharme-Barth et al., 2022). We therefore assess how such process blurring strict 122 

PS may affect the quality of inferences.  123 

We demonstrate the flexibility of the approach by fitting the model to three different 124 

important European demersal fishery resources in the Bay of Biscay: common sole (Solea 125 

solea, Linnaeus, 1758), hake (Merluccius merluccius, Linnaeus, 1758) and squids 126 

(Loliginidae family). With these contrasted examples, we illustrate the capacity of the 127 
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framework to handle multiple commercial fleets with potentially distinct PS intensities and 128 

different fishing behaviors.  129 
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2 MATERIAL AND METHODS 130 

2.1 Spatial integrated model 131 
Below we provide the core elements of the modelling approach. Additional details are 132 

provided in supplementary material (SM) 1. The model is structured in four layers: 133 

observations (here commercial and scientific CPUE in weight per unit of effort), sampling 134 

process, latent field (here fish biomass relative density) and parameters (Figure 1 - all 135 

notations are available in SM 1.1, Table S1). Sampling process is usually ignored in 136 

hierarchical models as it is mostly considered independent of the quantity of interest, and 137 

then has no consequence on the estimation procedure (Diggle et al., 2010). Here, the 138 

spatial distribution of commercial fishing is explicitly modelled as a non-homogenous 139 

Poisson point process whose intensity may depend on the biomass field and contributes 140 

to the likelihood. The observation processes of scientific and commercial data are 141 

conditional upon the biomass latent field and the sampled locations. 142 

All processes are considered to occur in a discrete fine grid (see for instance SM 2.1, 143 

Figure S2.1 or SM 3.1, Figure S3.1). We assume the density of the point process is 144 

piecewise constant in each cell grid which brings simplification in the expression of the 145 

likelihood of the point process (Diggle, 2013 - see SM 1.2). The time component is omitted 146 

and both commercial and scientific data are assumed to occur at the same time step. 147 

The IM is designed to assimilate the scientific data of several surveys and/or the 148 

commercial data of several fleets. In the following, the subscript 𝑗𝑗 refers to the different 149 

data sources either scientific or commercial. For instance, in a model with one scientific 150 

survey and two commercial fleets, 𝑗𝑗 will take the values 𝑗𝑗 = 1,2,3, with 𝑗𝑗 = 1 for the 151 

scientific data and 𝑗𝑗 = 2,3 for the two commercial fleets. 152 
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2.1.1 Latent field of relative biomass 153 
The fish biomass relative density 𝑆𝑆 (eq. (1) – (2)) is modeled through a latent log Gaussian 154 

spatial field defined on the same discrete spatial domain as the point process. The mean 155 

of the Gaussian field depends on environmental covariates through a log link where the 156 

linear predictor combines an intercept 𝛼𝛼𝑆𝑆, the linear effect of environmental covariates 157 

𝛤𝛤𝑆𝑆(𝑥𝑥) (effects captured by the corresponding fixed parameters 𝛽𝛽𝑆𝑆 representing the 158 

species-habitat relationship). The remaining spatial variation is accounted for through a 159 

zero-mean Gaussian random field (GRF) denoted 𝛿𝛿(𝑥𝑥) parameterized with a Matérn 160 

correlation function 𝑀𝑀(𝑥𝑥, 𝑥𝑥′; 𝜅𝜅,𝜙𝜙), characterized by the shape 𝜅𝜅 and the scale 𝜙𝜙 (Cressie, 161 

1993; Gelfand et al., 2010; Lindgren et al., 2011 and Banerjee et al., (2014)). The shape 162 

can be expressed in term of range 𝜌𝜌 = √8 
𝜅𝜅

 where 𝜌𝜌 is the distance for which the correlation 163 

between points is near 0.1. 164 

log�𝑆𝑆(𝑥𝑥)� = 𝛼𝛼𝑆𝑆 + 𝛤𝛤𝑆𝑆(𝑥𝑥)𝑇𝑇 ⋅ 𝛽𝛽𝑆𝑆 + 𝛿𝛿(𝑥𝑥)  (1) 165 

𝛿𝛿(𝑥𝑥) ∼ 𝐺𝐺𝐺𝐺𝐺𝐺(0,𝑀𝑀(𝑥𝑥, 𝑥𝑥′; 𝜅𝜅,𝜙𝜙))  (2) 166 

2.1.2 Sampling process 167 
Recent literature has emphasized the complexity of the targeting behavior processes 168 

(Salas and Gaertner, 2004; Haynie et al., 2009; Abbott et al., 2015; Girardin et al., 2017; 169 

Hintzen, 2021). In this paper, we did not attempt to model explicitly all those processes 170 

and opted for a simplified representation where the spatial targeting directly depends on 171 

the biomass field 𝑆𝑆 and on an additional spatially structured random term.  172 

Let us denote 𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐 𝑗𝑗 the spatial point process where commercial vessels of fleet 𝑗𝑗 are 173 

identified as fishing. In the following, all vessels in the same commercial fleet are assumed 174 

to have homogeneous behaviors.  Following Diggle et al. (2010), the set of fishing 175 
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locations are modeled conditionally on 𝑆𝑆, as a non-homogeneous Poisson point process 176 

with piecewise constant intensity 𝜆𝜆𝑗𝑗(𝑥𝑥) (eq. (3) - (4)). 177 

𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐 𝑗𝑗 ∼ ℐ𝒫𝒫𝒫𝒫(𝜆𝜆𝑗𝑗(𝑥𝑥))  (3) 178 

log �𝜆𝜆𝑗𝑗(𝑥𝑥)� = 𝛼𝛼𝑋𝑋 𝑗𝑗 + 𝑏𝑏𝑗𝑗 ∙ log(𝑆𝑆(𝑥𝑥)) + 𝜂𝜂𝑗𝑗(𝑥𝑥)  (4) 179 

For any fleet 𝑗𝑗, intensity 𝜆𝜆𝑗𝑗(. ) of the Poisson point process is modeled as a log-linear 180 

combination of the logarithm of the relative biomass 𝑆𝑆(. ) scaled by a parameter 𝑏𝑏𝑗𝑗, and a 181 

residual spatial effect 𝜂𝜂𝑗𝑗(. ) with the same structure as 𝛿𝛿(. ) but with specific parameters 𝜅𝜅 182 

and 𝜙𝜙. All parameters 𝛼𝛼𝑋𝑋 𝑗𝑗, 𝑏𝑏𝑗𝑗 and the spatial random effect 𝜂𝜂𝑗𝑗(𝑥𝑥) are specific to each fleet.  183 

The parameter 𝑏𝑏𝑗𝑗 quantifies the strength of PS by scaling the relationship between the 184 

local value of the resource field and the local fishing intensity. 185 

Fishing locations potentially depend on many other factors than fish distribution such as 186 

distance to harbor, logistical constraints, management regulations - spatial closures, 187 

quotas – or fishing habits/tradition (Salas and Gaertner, 2004; Haynie et al., 2009; Girardin 188 

et al., 2017). The spatial random effect 𝜂𝜂𝑗𝑗(. ) is needed to capture any remaining additional 189 

effect not captured by the dependence to 𝑆𝑆(. ). 190 

In that sense, a zero value for 𝑏𝑏𝑗𝑗 indicates that the choice of the sampling locations does 191 

not depend on the fish biomass relative density but only on the spatial random effect.  192 

In addition to 𝑏𝑏𝑗𝑗, a dimensionless spatial metric was developed to quantify the strength of 193 

PS (SM 1.3).  194 

2.1.3 Observation process 195 
Both scientific and commercial observations are considered as proportional to the 196 

underlying biomass through a zero-inflated observation process. In our applications, 197 
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observations are expressed as CPUE (in weights / unit effort), with high proportion of 198 

zeros (zeros represent on average 30% of the commercial data and 10 to 50% of scientific 199 

data).  200 

Observations are modelled through a zero-inflated lognormal model conditionally on 201 

biomass 𝑆𝑆(𝑥𝑥) in cell 𝑥𝑥 (eq. (5-6)). The model is derived from Thorson et al. (2016) or 202 

Thorson (2018). We assume that the expected catch 𝜇𝜇𝑗𝑗(𝑥𝑥) for any fleet/data source 𝑗𝑗 in 203 

the cell 𝑥𝑥 depends on the latent field value 𝑆𝑆(𝑥𝑥) and a catchability coefficient 𝑞𝑞𝑗𝑗 (eq. (5)). 204 

A zero catch (𝑦𝑦 = 0) is modeled as a Bernoulli random variable with parameter 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑒𝑒𝜉𝜉𝑗𝑗 ⋅205 

𝜇𝜇𝑗𝑗(𝑥𝑥)), where 𝜉𝜉𝑗𝑗 is the parameter controlling the intensity of zeros relatively to the 206 

expected catch (eq. (6)). Then, 𝜇𝜇𝑗𝑗(𝑥𝑥) being fixed, the higher (resp., the lower) 𝜉𝜉𝑗𝑗, the lower 207 

(resp. the higher) the probability of obtaining a zero-catch.  208 

The distribution of a positive catch 𝑦𝑦 > 0 at a given 𝑥𝑥 is defined as the combination of the 209 

probability of obtaining a non-zero catch (1 − 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑒𝑒𝜉𝜉𝑗𝑗 ⋅ 𝜇𝜇𝑗𝑗(𝑥𝑥))) times a positive 210 

continuous distribution 𝐿𝐿 (here a lognormal distribution) with expected value 211 

𝜇𝜇𝑗𝑗(𝑥𝑥)

(1−𝑒𝑒𝑒𝑒𝑒𝑒(−𝑒𝑒𝜉𝜉𝑗𝑗⋅𝜇𝜇𝑗𝑗(𝑥𝑥)))
 and standard deviation 𝜎𝜎𝑗𝑗. This formulation allows to represent the zero 212 

catch while assuring that the expected catch still equals 𝜇𝜇𝑗𝑗(𝑥𝑥).   213 

𝜇𝜇𝑗𝑗(𝑥𝑥) = 𝑞𝑞𝑗𝑗 ⋅ 𝑆𝑆(𝑥𝑥)  (5) 214 

         P(𝑌𝑌 = y|𝑥𝑥, 𝑆𝑆(𝑥𝑥)) =215 

⎩
⎪
⎨

⎪
⎧ exp�−𝑒𝑒𝜉𝜉𝑗𝑗 ⋅ 𝜇𝜇𝑗𝑗(𝑥𝑥)�  if 𝑦𝑦 = 0

�1 − exp�−𝑒𝑒𝜉𝜉𝑗𝑗 ⋅ 𝜇𝜇𝑗𝑗(𝑥𝑥)�� ⋅ 𝐿𝐿 �𝑦𝑦, 𝜇𝜇𝑗𝑗(𝑥𝑥)

�1−exp�−𝑒𝑒𝜉𝜉𝑗𝑗⋅𝜇𝜇𝑗𝑗(𝑥𝑥)��
,𝜎𝜎𝑗𝑗2�  if 𝑦𝑦 > 0

  (6) 216 
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Per se, catchability 𝑞𝑞𝑗𝑗 are not identifiable as there is no information in the model to 217 

estimate the absolute scale of 𝑆𝑆. Commercial catches and/or scientific surveys will be only 218 

informative about fish biomass relative density and additional information must be 219 

provided to ensure statistical identifiability. If only one data type feeds the model (only 220 

scientific or commercial data), relative catchability is fixed to 1 and the spatial random field 221 

values is in the same scale as the data. If two data types (or more) are used to feed the 222 

model, one of the relative catchability (denoted 𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟) has to be fixed, the other ones being 223 

estimated relatively to the first one through a scaling factor 𝑘𝑘𝑗𝑗 (eq. (7)).  224 

𝑞𝑞𝑗𝑗 = 𝑘𝑘𝑗𝑗 ∗ 𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟  (7) 225 

As it is illustrated further in the simulation-estimation study (see section 3.1.1), the choice 226 

of the reference level can have important consequences on the precision of estimation.  227 

2.1.4 Maximum likelihood estimation 228 
The estimation of the model is performed with TMB (Template Model Builder - Kristensen 229 

et al. (2016)) and the spatial random effects are estimated through the SPDE approach 230 

(Lindgren et al., 2011) within the R software (R Core Team, 2020). More details on 231 

estimation are available in the supplementary material (SM 1.4).   232 

2.1.5 Integrated model validation 233 
A key issue with IM is whether the different data sources provide consistent or conflicting 234 

information (Saunders et al., 2019; Zipkin et al., 2019; Peterson et al., 2021). In our 235 

framework, the key question is whether integrating commercial data in addition to scientific 236 

data will complement or will disrupt the inferences obtained from the scientific data, 237 

considered as a reference source of information. To address this issue, we propose a 238 

validation procedure based on the consistency check initially developed by Rufener et al. 239 
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(2021) and designed to check whether estimates obtained from the IM are consistent with 240 

those obtained from the model fitted to scientific data only. The procedure would reject 241 

consistency if the parameters estimates from the IM fall outside the 95% confidence region 242 

of parameters estimates from scientific data only (see SM 1.5 for more details on the 243 

procedure). This validation step is applied to both simulations and case studies. 244 

2.2 Simulation-estimation experiments 245 
We conducted simulation-estimation experiments to assess the performance of the 246 

method for different data/model configurations (Table 1). Additional practical details on 247 

the simulations are provided in SM 2. For all scenarios, simulations of data, covariates 248 

and GRF were parameterized to tailor the case studies described hereafter. All scenarios 249 

and configurations are repeated 100 times so as to capture the variability between 250 

replicates.  251 

Simulation-estimation experiments were specifically designed to address four questions 252 

detailed below. In all cases, commercial data were simulated with various levels of PS 253 

(𝑏𝑏 = 0 for uniform sampling, 𝑏𝑏 = 1 for moderate PS, 𝑏𝑏 = 3 for strong PS) to assess the 254 

effect of PS on model’s performance (Figure 2). 255 

(Q1) How do each data source contribute to inferences?  256 

In real case study, commercial data sample size may be far superior to scientific data 257 

(specifically when using landings data) which might result in commercial data that 258 

dominate inferences. To assess how the balance between the scientific and commercial 259 

sample sizes drives the relative contribution of each data source, simulations were 260 

conducted with few scientific samples (50 each) with increasing commercial samples 261 

(50=small, 400=medium and 3000=large), and with a large commercial sample size 262 
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(3000) with increasing scientific sample size (50=small, 400=medium, 3000=large). No 263 

scenario with more scientific samples than commercial samples is presented here as it is 264 

a very unlikely configuration when using logbook catch data.  265 

For each combination of commercial and scientific sample size, we fitted four different 266 

models: a model fitted to scientific data only, a model fitted to commercial data only, and 267 

two IM fitted to both commercial and scientific data, one with the scientific data used as 268 

reference level and another one using the commercial data as reference level (Cf. eq. (7)). 269 

For questions Q2, Q3 and Q4, all simulations were conducted using 𝑛𝑛𝑠𝑠𝑠𝑠𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 50 and 270 

𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 3000 to tailor the case studies. Commercial data are used as the reference 271 

for catchability in the IM. 272 

(Q2) How does a partial coverage of the study area by the commercial data affect 273 

the quality of the estimation?  274 

While scientific surveys are supposed to cover the full population distribution area, partial 275 

coverage of the area by commercial fishing boats may arise from different sources like 276 

spatial management closures (e.g. box closure) or too expensive travels from the coast. 277 

To assess how a partial coverage by commercial data can affect estimates, we simulated 278 

data with the commercial sampling intensity arbitrarily fixed to 0 in a fixed 9x9 box (15% 279 

of the domain) while some biomass and some scientific samples are still simulated in this 280 

area. We compared estimates of the biomass in the entire area with those obtained with 281 

commercial data available on the whole domain.  282 

(Q3) What is the cost of ignoring PS in estimation when sampling is preferential?  283 

Modelling preferential sampling involves conditioning results upon a specified structural 284 

assumption about sampling as well as increased computational cost. Here, we assess 285 
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how much ignoring PS would affect the quality of inferences when sampling is actually 286 

preferential. We voluntary introduce misspecification between the model used for 287 

simulating the data (with various levels of PS intensity) and the one used in the estimation 288 

procedure (b is alternatively estimated or arbitrarily fixed at 0).  289 

(Q4) How does the estimation perform when additional processes other than PS 290 

drive the fishing locations? 291 

Fishing locations potentially depend on many other factors independent from the species 292 

distribution (Salas and Gaertner, 2004; Haynie et al., 2009; Girardin et al., 2017). To 293 

assess how such process blurring strict PS may affect the quality of inferences, we 294 

simulate data with a sampling intensity that depends on both the biomass distribution (PS) 295 

and an additional spatial random terms 𝜂𝜂𝑓𝑓(. ) independent from the biomass distribution 296 

(eq. (4); see Table 1 for more details on 𝜂𝜂𝑓𝑓(. ) parameterization), and compare the 297 

inferences obtained from a data set simulated with strict PS (𝜂𝜂𝑓𝑓(. ) = 0 on the full domain).  298 

Note that for questions Q1, Q2 and Q3, the random effect 𝜂𝜂 was fixed to 0 in simulations 299 

(but it is still estimated in the estimation model), so that the sampling process only 300 

depends on the distribution of biomass.  301 

2.2.1 Performance metrics 302 
The performance of the estimation method was assessed using different metrics on key 303 

model parameters.  304 

The quality of the total biomass estimation (the sum over all grid cells, 𝐵𝐵 = ∑ 𝑆𝑆𝑥𝑥 (𝑥𝑥)) was 305 

explored through the relative bias (𝐵𝐵−𝐵𝐵
�)

𝐵𝐵
, that quantifies how much the total biomass is over 306 

or under-estimated.  307 
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The quality of the estimation of the parameter 𝑏𝑏 is assessed through the relative bias 308 

defined as 𝑏𝑏−𝑏𝑏
�

𝑏𝑏
 (except for 𝑏𝑏 = 0, where only the absolute bias is considered). We also 309 

assessed the relative bias of the species-habitat relationship estimate 𝛽̂𝛽𝑆𝑆 and range 310 

parameter 𝜌𝜌 as these parameters are meaningful for understanding species distribution.  311 

The precision of the spatial predictions was studied with the mean squared prediction error 312 

between the simulated and the estimated latent field values 1
𝑛𝑛
∑ �𝑆𝑆(𝑥𝑥) − 𝑆𝑆(𝑥𝑥)��

2
𝑥𝑥  (MSPE – 313 

𝑛𝑛 stands for the number of grid cells).  314 

2.3 Case studies 315 
We applied the approach on three case studies of demersal fisheries in the Bay of Biscay: 316 

the common sole (Solea solea, Linnaeus, 1758), the hake (Merluccius merluccius, 317 

Linnaeus, 1758) and the squids (Loliginidae family). These case studies were selected 318 

because they emphasize different intensities of preferential sampling. Further details on 319 

case studies and data are provided in SM 3. 320 

To compare models on the same spatial domain for the three species, we limited the 321 

analysis to scientific and commercial data available on the Bay of Biscay only (SM 3.1, 322 

Figure S3.1 for the spatial grids). Besides, to get some replicates of the analysis, we 323 

applied the approach on 2 years for each case study (2017 and 2018 for common sole – 324 

2014 and 2015 for hake and squid). To keep it synthetic, only the data and the results of 325 

the models for hake in 2014, sole in 2017 and squids in 2015 are presented in this 326 

manuscript. The related IM estimating PS passed the consistency check for both statistical 327 

tests and they allow to clearly illustrate the effect of PS on model outputs. 328 
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2.3.1 Survey data 329 

Scientific data (CPUE, in kg/hour) were derived from the Orhago survey for common sole  330 

and EVHOE survey for hake and squids (ICES, 2020a). The sampling density (number of 331 

data points / km2) of those two surveys revealed representative of the sampling density of 332 

the main European trawl surveys from the DATRAS database (see SM 3.2). In 333 

comparison, commercial data used in the case studies are denser by 2 orders of 334 

magnitude. Scientific data was aligned on commercial data by filtering only individuals 335 

above the minimum landing size when available (24 cm for sole, 27 cm for hake - ICES, 336 

2020). 337 

2.3.2 Commercial data 338 

For each species, we filtered commercial data for ‘bottom trawlers’ as they cover a wide 339 

part of the study area (Figure 3) and provide easy to compute and reliable CPUE. 340 

Commercial data were standardized by the fishing effort in (kg/hour). For hake and sole, 341 

we filtered the métier targeting demersal fish (called OTB_DEF) and for squids, the métier 342 

targeting cephalopods (called OTB_CEP). 343 

The orders of magnitude of commercial sample size is much higher than for scientific data. 344 

For hake (i.e. OTB_DEF), there are 6852 commercial samples in 2014 and 5000 in 2015. 345 

For squid (i.e. OTB_CEP), there are 7486 commercial samples in 2014 and 9611 in 2015. 346 

This should be compared with the 86 EVHOE samples for both years. For sole (i.e. 347 

OTB_DEF), there are 2401 samples in 2017 and 3325 in 2018 compared with the 49 348 

Orhago samples for both years. 349 



17 
 

2.3.3 Habitat covariates  350 

Two covariates classically used to describe benthic species distribution were selected: 351 

depth and sediment type (Le Pape et al., 2003; Witman and Roy, 2009; Rochette et al., 352 

2010). Depth was separated into several categories and was considered (as sediment) 353 

as a categorical variable (SM 3.7, 3.8). 354 

2.3.4 Model configurations  355 
As for the simulation-estimation experiments, the models were fitted under different 356 

configurations. To assess the information brought by each dataset, we compared the 357 

model fitted to scientific data only, to commercial data only and to both scientific and 358 

commercial data. To assess the effect of PS on model outputs, we compared IM 359 

accounting for PS (𝑏𝑏 is estimated) with IM where PS is ignored (𝑏𝑏 is fixed to 0). 360 

For the sole case study, we compared results obtained from the IM by considering one 361 

homogeneous or two distinct fleets with specific catchability and targeting parameters. 362 

Note that splitting one fleet in 2 distinct fleets is performed through a PCA coupled with a 363 

HCPC analysis on vessels characteristics data derived from both logbooks and VMS data. 364 

All the clustering analysis is described in SM 3.9.  365 

2.3.5 Model evaluation 366 
Uncertainty of the predictions are quantified through the coefficient of variation and all 367 

estimates (e.g. fixed parameters, total biomass) are represented with related 95 % 368 

confidence intervals. We assess the consistency of IM through the statistical tests 369 

described in section 2.1.5 and in SM 1.5. Finally, the different IM are compared through a 370 

5-fold cross validation, and model performance was quantified based on two metrics: the 371 

𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓 that measures goodness of fit (MSPE – mean squared prediction error), and the 372 
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𝑃𝑃𝑃𝑃𝑃𝑃 that measures predictive capacity (see SM 3.10 for more details on the metrics and 373 

guidelines for interpretation). 374 

3 RESULTS 375 

3.1 Simulations 376 
We summarize the main results of the simulation-estimation experiments below. 377 

Additional results are provided in SM 4. 378 

3.1.1 Contribution of each data source in the integrated model 379 
Models fitted on scientific data only provide systematically unbiased estimates of total 380 

biomass (the mean bias is close to 0 for all sample size - Figure 4, 1𝑠𝑠𝑠𝑠 row), and the 381 

variance of estimations logically decreases with scientific sample size. Note that the 382 

species-habitat relationship estimates 𝛽̂𝛽𝑆𝑆 are also unbiased (see SM 4.1). 383 

Overall, inferences from IM revealed consistent with those obtained from scientific data 384 

only (SM 4.2.1). Even when the commercial sample size is high and the scientific sample 385 

size is low, only 3% of the p-values fall below the 0.05 threshold for the fixed effect test 386 

(the test wrongly rejects consistency). For the random effect test, the results are more 387 

balanced as 10% of the p-values fall below the 0.05 threshold when data size are very 388 

unbalanced (low scientific sample – high commercial sample). 389 

In almost all configurations, IM provide unbiased and more precise estimates for total 390 

biomass and spatial biomass predictions compared to the model fitted to scientific data 391 

only (Figure 4). As expected, the higher the commercial and the scientific sample size, 392 

the more accurate the spatial predictions, the PS parameter 𝑏𝑏 and total biomass 393 

estimates. Estimates of 𝑏𝑏 are unbiased in most cases except when commercial sample 394 

size is low and PS is strong (Figure 4, 2𝑛𝑛𝑛𝑛 row).  395 



19 
 

As expected, the contribution of each data sources in the IM directly depends on the 396 

balance in the sample size. When sample size is balanced between the data sources, 397 

then integrating the two data sources in the model systematically improves the inferences 398 

with regards to situations where only one data source is analyzed. For instance, for large 399 

commercial and scientific sample size (com.L_sci.L) and no PS, the precision is 1.5 higher 400 

(i.e. the MSPE is 1.5 lower) for the IM compared to single-data models (either scientific or 401 

commercial - Figure 4, 3𝑟𝑟𝑟𝑟 row, 1𝑠𝑠𝑠𝑠 column). However, when the sample sizes are 402 

unbalanced, the data source with the higher sample size (here commercial data) 403 

dominates inference and integrating another data source with a smaller sample size (here 404 

scientific data) contributes to a much lesser extent to inference. See for instance the 405 

situation where commercial sample size is large and scientific sample size is low 406 

(com.L_sci.S - Figure 4, 3𝑟𝑟𝑟𝑟 row, 1𝑠𝑠𝑠𝑠 column). In this case, the performances of the model 407 

fitted to commercial data alone – with reference level fixed to commercial data - are very 408 

close to those of the IM whatever the intensity of PS. 409 

Interestingly, the higher the intensity of PS, the higher the benefits of integrating 410 

commercial data in the model (Figure 4, 3𝑟𝑟𝑟𝑟 row); for instance, when both datasets have 411 

large sample sizes (com.L_sci.L), increasing PS reduces error predictions (i.e. increases 412 

accuracy) by 2 each time (i.e. for 𝑏𝑏 = 0, 𝐸𝐸(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) = 20; for 𝑏𝑏 = 1, 𝐸𝐸(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) = 10; for 𝑏𝑏 =413 

3, 𝐸𝐸(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) = 5). 414 

Still, the simulations also reveal some limits in the inferences. First, the range parameter 415 

might be poorly estimated and slightly biased when the sample size is low while being 416 

better estimated when increasing the sample size or integrating additional data in the 417 

analysis (see SM 4.3). 418 
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Also, in unbalanced cases the accuracy of total biomass estimates from the IM revealed 419 

highly sensitive to the choice of the reference level (Figure 4, 1𝑠𝑠𝑠𝑠 row). When the 420 

commercial sample size far exceeds the scientific sample size, setting the reference level 421 

to the commercial data produces more precise estimates than setting the reference level 422 

to scientific data. When defining scientific data as reference level, the intercept of the 423 

latent field of relative biomass is estimated from the few scientific samples and resulting 424 

estimates are less precise than when defining the reference level with a more numerous 425 

data source (here commercial data). This is also true - to a lesser extent - for spatial 426 

predictions (Figure 4, 3𝑟𝑟𝑟𝑟 row).  427 

In the following, only the case where commercial samples exceed scientific samples and 428 

the reference level is fixed with commercial data is explored further as it is the closest to 429 

the case studies configuration (Table 1). 430 

3.1.2 Impact of a partial coverage of the study area by the commercial data 431 
When commercial data only partially cover the distribution area, commercial data still 432 

provide valuable information to predict biomass spatial distribution whatever the PS 433 

intensity (Figure 5, 2𝑛𝑛𝑛𝑛 column). When sampling is not preferential (data simulated with 434 

𝑏𝑏 = 0), a partial coverage of the distribution area produces on average 1.5 less precise 435 

spatial predictions but estimates remain unbiased (Figure 5, 3𝑟𝑟𝑟𝑟 row, comparing 1𝑠𝑠𝑠𝑠 and 436 

2𝑛𝑛𝑛𝑛 column). When sampling is preferential (either moderate or high), biomass estimates 437 

are slightly underestimated. Integrating scientific data in the analysis does not correct this 438 

bias. 439 
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Finally, all model configurations allow for unbiased and precise estimation of the species-440 

habitat parameters 𝛽̂𝛽𝑆𝑆 whether or not there is a partial coverage of the domain (see SM 441 

4.1) and overall almost all IM are consistent with scientific-based model (SM 4.2.2). 442 

3.1.3 How does ignoring PS impact inferences? 443 
As expected, the impact of ignoring PS in the estimation model is negligible when data is 444 

simulated with no PS, and becomes more and more detrimental when the intensity of PS 445 

increases in the truth (Figure 5, 3𝑟𝑟𝑟𝑟 column). With no surprise, when data are generated 446 

with no PS (𝑏𝑏 = 0), ignoring PS in the estimation procedure has no effect on the estimation 447 

performance. When PS is moderate, total biomass estimates are 5 % overestimated (𝑏𝑏 =448 

1). In the case of strong PS (𝑏𝑏 = 3), ignoring PS in the estimation strongly deteriorates the 449 

quality of inferences regarding total biomass estimates (Figure 5, 1𝑠𝑠𝑠𝑠 row, 3𝑟𝑟𝑟𝑟 column). 450 

Total biomass estimates are overestimated by 50% on average. However, the main spatial 451 

patterns are well identified with or without consideration of PS, even though more precise 452 

when accounting for PS (Figure 5, 3𝑟𝑟𝑟𝑟 row, 1𝑠𝑠𝑠𝑠 column). SM 4.4 (Figure S4.4.1) presents 453 

maps comparing a simulated biomass field and model predictions obtained by considering 454 

or ignoring PS when 𝑏𝑏 = 3. The areas with high biomass values (i.e. where commercial 455 

sampling is dense) are well predicted by the models accounting for PS or not. The main 456 

differences are localized in poorly sampled areas where biomass is low. Accounting for 457 

PS in estimation allows to interpret the low sampling intensity areas as low-density areas, 458 

and therefore to reduce the bias in those areas (SM 4.4, Figure S4.4.2).  459 

Finally, from a computational point of view, accounting for PS on average multiplies by 4 460 

the computational time (see SM 4.5). 461 
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3.1.4 Effect of other spatially structured processes affecting fishing locations 462 
As expected, precision of estimates are deteriorated when fishing locations actually 463 

depend upon a combination of biomass distribution (PS) and other mechanisms (here 464 

captured by a spatially structured random term - Figure 5, 4𝑡𝑡ℎ column). In this case, the 465 

IM still provides valuable inferences on fish distribution, fish total biomass and estimates 466 

of 𝑏𝑏, although estimations are less accurate than the base case. For instance, MSPE are 467 

5 times lower when nothing else than PS affects sampling locations compared with a case 468 

where sampling locations depend on both PS and other independent spatial processes 469 

(Figure 5, 3𝑟𝑟𝑟𝑟 row, 1𝑠𝑠𝑠𝑠 and 4𝑡𝑡ℎ column). But interestingly, the weight of scientific data 470 

increases when the sampling distribution of commercial data is blurred by spatial 471 

processes independent from biomass spatial distribution. MSPE and relative bias 472 

provided by the IM are both 1.4 smaller compared to those obtained when the model is 473 

fitted to commercial data only. 474 

3.2 Case studies 475 
Below we summarize the main results obtained from the application of the framework to 476 

the three case studies. Additional results and maps are provided in SM 5. 477 

3.2.1 Contribution of each dataset to the inferences 478 
Almost all the case studies successfully passed the consistency test between the IM and 479 

the model fitted to scientific data only (see SM 5.1). Still, models based on scientific data 480 

provide different spatial predictions compared with the IM. Predictions for sole and squids 481 

from the scientific-based model are mainly shaped by the covariate effects (Figure 6; for 482 

further analysis see SM 5.2, SM 5.3 and SM 5.4). On the other hand, predictions from the 483 

IM are mainly shaped by the spatial random effect as commercial data allow to better 484 

capture the local spatial correlation structures. 485 



23 
 

Consistently with simulations, inferences from the IM are mainly driven by the commercial 486 

data (Figure 6). This logically arise from the much higher sample size of commercial data 487 

compared with scientific data, combined with the good coverage of commercial data in 488 

high-density areas (Figure 3). As commercial data is denser than scientific data, they will 489 

better capture local spatial correlation structures than scientific data. SM 5.5 provide some 490 

additional analysis of the information brought by commercial data in the IM.  491 

In this configuration, scientific data bring information to model predictions in areas poorly 492 

covered by the commercial data (SM 5.6 - e.g. for squids, the offshore predictions are 493 

downscaled by scientific data). 494 

3.2.2 Preferential sampling and other processes affecting fishing locations 495 
In this section and related SM (SM 5.7 to SM 5.10), we focus on results from the IM only. 496 

For the three case studies, estimates of 𝑏𝑏 are positive, suggesting sampling by fishermen 497 

is preferential towards high biomass density areas. The hake case study has the lowest 498 

PS parameter (𝑏𝑏� = 0.88, 𝑠𝑠𝑠𝑠(𝑏𝑏�)  =  0.107), followed by sole (𝑏𝑏� = 2.4, 𝑠𝑠𝑠𝑠(𝑏𝑏�)  =  0.046) and 499 

squids (𝑏𝑏� = 3.5, 𝑠𝑠𝑠𝑠(𝑏𝑏�)  =  0.025).  For more intuition concerning the strength of PS and 500 

how it varies in space, refer to SM 5.7. In all case studies, the spatial random term 𝜂𝜂 in 501 

the sampling process turned to be spatially structured (SM 5.8) and captures 25% to 97% 502 

of the spatial variability of fishing locations (SM 5.9). This highlights the importance of 503 

other spatial mechanisms in the choice of fishing locations compared to strict PS towards 504 

biomass distribution. 505 

Consistently with simulations, the higher the PS intensity, the higher the differences 506 

between inferences obtained with and without considering PS. When comparing biomass 507 

field values (Figure 7, left column), ignoring PS increases predictions in poorly sampled 508 
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areas (all red areas – compare with Figure 3). This effect is particularly marked for the 509 

squid case study where the relative difference is the strongest in the offshore areas. 510 

However, considering PS or not has relatively little effect in areas where sampling is 511 

spatially denser (all white areas). Ignoring PS affects total biomass indices estimates and 512 

the relative difference between biomass estimates with or without PS increases with the 513 

value of b estimates (Figure 7, right column).  514 

When the estimated PS intensity is high (i.e. in the case of squids) accounting for PS can 515 

improve model goodness-of-fit and predictive capacity (SM 5.10). 516 

3.2.3 Benefits of considering different fleets in the estimation model 517 
Based on the sole case study, we demonstrate the capacity of the model to integrate 518 

multiple commercial fishing fleets, each with specific parameters (catchability and 519 

targeting). In the sole case studies, considering two different fleets in the IM (instead of 520 

one homogeneous) improves goodness-of-fit towards scientific data (SM 5.11, y-axis) and 521 

modifies spatial predictions (SM 5.12). 522 

  523 



25 
 

4 DISCUSSION 524 

Main findings 525 

Combining multiple sources of data to build more informative spatio-temporal models for 526 

fish distribution is a major challenge in fishery ecology. Commercial catch per unit effort 527 

data have long been recognized as a valuable source of information eventually highly 528 

complementary to scientific survey data. But the complexity of the mechanisms driving 529 

the way fishermen sample in space and time make the combination of scientific and 530 

commercial data challenging.  531 

In this paper, we provide a hierarchical framework to integrate scientific surveys and 532 

commercial catch declaration data to infer species distribution while considering the effect 533 

of PS on fishing points distribution. The new model allows for exploring and questioning 534 

the challenges raised by such integration. The benefit but also the limits of the new 535 

approach were evaluated using simulations and through the application of the model to 536 

three contrasted demersal case studies (sole, hake and squids) of the Biscay Bay fishery.  537 

Both simulations and case studies demonstrate that ignoring PS in the inference may be 538 

highly detrimental when the intensity of PS is strong. The present framework can serve 539 

as a tool to assess the benefit of including PS in analysis, depending on the intensity of 540 

PS but also on the modelling objectives. As already shown in previous studies (Conn et 541 

al., 2017; Pennino et al., 2019), when PS actually occurs in commercial catches, ignoring 542 

this process may bias inferences on total biomass estimates. Even if ignoring PS may not 543 

hamper the capacity to detect areas of high biomass, the biomass in low-density areas 544 

may be overestimated. Therefore, if the objective is to compute biomass indices integrated 545 

over a large area, then it might be worth accounting for PS to avoid biased results. By 546 
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contrast, if the objective is to identify hotspots, the benefits of considering PS may be low 547 

with regard to the additional computational time it requires.  548 

The three case studies illustrated the potential of the model to handle the variability of PS 549 

behavior among species and fleets. Low PS was revealed for hake, while a moderate and 550 

strong PS was revealed for sole and squids, respectively, which is consistent with the 551 

expert knowledge on the behavior of those bottom trawls fleets (Y. Vermard, com. pers.).  552 

Results also demonstrate the capacity of the framework to integrate commercial catch 553 

data from multiple fleets, and the benefits for the quality of inferences when those fleets 554 

have different features such as distinct catchabilities or targeting behaviors. For the sole 555 

case study, this approach proves useful to distinguish two segments in the bottom trawl 556 

fleet, which improved model outputs. This framework could be extended to more than two 557 

fleets and combined with other studies analyzing fleets structure (Pelletier and Ferraris, 558 

2000; Ferraris, 2002; Stephens and MacCall, 2004; Deporte et al., 2012; Winker et al., 559 

2013; Okamura et al., 2018).  560 

Challenges in modelling PS 561 

Still, modelling the spatial distribution of commercial fishing locations remains highly 562 

challenging (Hintzen, 2021; Hintzen et al., 2021). Our framework is shaped to integrate 563 

data from homogeneous fishing fleets supposed to share the same fishing behavior, which 564 

simplifies the modelling of the non-uniform spatial intensity of fishing for each fleet. We 565 

propose a parsimonious model where the dependence of the sampling intensity to the 566 

biomass is supposed to be linear in the log scale. This is a strong hypothesis and 567 

departure from this hypothesis may obviously exist in the truth. For instance, the intensity 568 

of PS could vary in space such as in Conn et al. (2017) who considered that the degree 569 



27 
 

of PS could change across the landscape. On the other hand, however, the log-log linear 570 

assumption is easy to implement in other software including the VAST R package used 571 

for operational assessments in some management regions (Thorson et al., 2019).   572 

Of course, many other factors may drive the spatial intensity of fishing, and those were 573 

simply captured in our model through an additional spatial random term. For instance, 574 

fishers’ behavior may depend on prior knowledge of fish spatial distribution, on information 575 

sharing within fishing cooperatives, on expected distribution of bycatch species, or 576 

logistical constraints (e.g., transit costs) (Salas and Gaertner, 2004; Haynie et al., 2009; 577 

Girardin et al., 2017). Targeting behavior may also be directed toward an assemblage of 578 

species rather than toward a single species (Bourdaud et al., 2019).  579 

The random effect should be able to capture additional variations whenever the departure 580 

from a continuous Gaussian random field is not too high. If not, for instance in the case of 581 

fishery closures where fishing activity suddenly drops to very low levels (as explored in 582 

simulation-estimation), the model may produce biased estimates due to model 583 

misspecification. We did not detect such misspecification in our case study, but we 584 

recommend that future analyses based on fishery-dependent data present a log-log plot 585 

between sampling intensity and predicted biomass density to diagnose strong departure 586 

from model hypothesis.  587 

Still, some non-spatial targeting has been reported from multi-species catch records 588 

(Stephens and MacCall, 2004; Okamura et al., 2018). Efforts to integrate these methods 589 

into spatio-temporal models are underway (Thorson et al., 2016), although these methods 590 

have not previously been extended to jointly analyzing multi-species fishery and survey 591 

data. 592 
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Relative contribution of scientific and commercial data 593 

Our analysis exemplifies that a key issue in such integrated modelling exercise is to get a 594 

sensible evaluation of the relative contribution of the different sources of data in 595 

estimation. In particular, critical issues with IM are whether the different data sources 596 

provide eventually highly unbalanced quantity of information (then the inferences are fully 597 

dominated by one of the data sources; Fletcher et al., 2019) and whether they provide 598 

complementary or conflicting information to the final inferences (Saunders et al., 2019; 599 

Zipkin et al., 2019; Peterson et al., 2021). 600 

We implemented a likelihood ratio-test (Rufener et al., 2021) to check for model 601 

consistency between the IM and the scientific-based model. In most cases, models 602 

passed the consistency check successfully, although it was rejected in some cases. Some 603 

further analysis should investigate in detail the reasons of these inconsistencies as they 604 

could probably shed light on some new research avenues for model improvement. For 605 

instance, some neglected vessel effect (e.g., difference in catchability among vessels - 606 

Thorson and Ward, 2014) or some too simplistic representation of the sampling and/or 607 

the observation process of commercial data might partly explain these inconsistencies. 608 

Simulations revealed that when scientific data and commercial data have balanced 609 

sample size, they both contribute to inference and the IM will provide better biomass 610 

predictions than models based on single-data set. As expected, when the sample size of 611 

commercial data far exceeds scientific data, inference about spatial patterns is mainly 612 

driven by the commercial data. In the three case studies, we used commercial data with 613 

sample sizes that far exceed the scientific one. In that case, scientific data have relatively 614 

limited weight in the final inference. Still, they bring valuable information in areas that are 615 

not sampled by the commercial fishery. Also, scientific data remain a critical component 616 
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in the analysis as they provide some reference data through a standardized sampling plan 617 

and a controlled protocol allowing then to assess for the IM consistency. It would be worth 618 

applying our framework to other case study that may consist in more balanced data sets, 619 

such as models seeking to combine scientific with onboard observer data (Rufener et al. 620 

2021), or in pelagic fisheries where acoustic surveys can provide continuous observations 621 

over the full domain. 622 

Our results also point out the importance of setting the reference level for the catchability 623 

coefficient with either the scientific or the commercial data. In particular, when the sample 624 

size of the commercial data far exceeds the scientific survey, fixing the reference level 625 

with scientific surveys generally results in higher imprecision, due to the lower sample 626 

size. But still, in certain cases, the scientific data may provide absolute information on 627 

biomass and fixing the catchability factor associated with the survey data can result in an 628 

interpretable measure of index scale (Thorson et al., 2021). Hence, the choice of the 629 

reference level could be a matter of tradeoffs between precision of inferences and 630 

interpretation of the results in terms of scale. 631 

The limits of reallocated catch data 632 

Probably one of the major limits of our approach is that the actual framework ignores the 633 

uncertainty that arises from the procedure used to reallocate the catch declarations in 634 

space. Obtaining the spatialized CPUE inputs used in the model requires pre-treatment 635 

of the commercial catch declaration data to allocate declaration data to VMS positions 636 

(Hintzen et al., 2012). Raw data corresponds to fishing operations that are daily 637 

aggregated and reported at coarse administrative spatial units (0.5° latitude by 1° 638 

longitude rectangles). These declarations are then reallocated uniformly on all GPS 639 
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locations previously identified as fishing in the vessel path. This procedure has been 640 

demonstrated to be robust while being a fast and a pragmatic approach for reallocating 641 

landings to VMS pings (Gerritsen and Lordan, 2010; Murray et al., 2013). However, it 642 

implies strong hypotheses that may artificially increase or transform the information 643 

provided by the data. Typically, the uniform reallocation of catch declarations on all GPS 644 

positions identified as fishing may smooth the spatial signal, which could potentially 645 

explain the lack of species-habitat relationship obtained from the IM. The effect of such 646 

reallocation should be explored in further study to better understand its consequences on 647 

model predictions/estimates and further model development should investigate how to 648 

mitigate its consequences. 649 

Perspectives 650 

Our work raises some major challenges which all constitutes exciting tracks for future 651 

research.  652 

Data-weighting approaches could be explored further to better control the contribution of 653 

the two sources of data and eventually assess if increasing scientific data weight could 654 

improve model predictive capacity. Data-weighting methods intend to modify the relative 655 

influence of the data sources by assigning or estimating a weight for each data source 656 

(Francis, 2017; Punt, 2017; Wang and Maunder 2017; Punt et al., 2020). Only very few 657 

studies have already explored the potential for data weighting in the SDM context 658 

(Fletcher et al., 2019). Still, several questions regarding the weight specification remain 659 

open or largely debated. For instance, how to rigorously fix/estimate/interpret the weight? 660 

Also, when can we consider that a data-weighting approach is relevant or is it only a matter 661 

of model misspecification? Some theoretical and modelling development could be highly 662 
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valuable to provide a generic and rigorous formalization for either data weighting or model 663 

correction in the context of SDM (but see for instance the approach provided by Thorson 664 

et al. (2017b) for composition data in the context of stock assessment models). 665 

Another option would consist in developing an alternative observation model for the 666 

commercial CPUE in order to better capture the uncertainty associated with the 667 

reallocation procedure. As a general idea, an observation model could be developed to 668 

explicitly represent that CPUE are available at the scale of the daily fishing activity (the 669 

scale that corresponds to the catch declaration), rather than artificially reallocating 670 

uniformly catch declarations on related VMS pings. Doing so, the quantity of information 671 

provided by commercial data would be more representative of the information they really 672 

contain.  673 

Future work should also seek to better integrate the discrete-choice and econometric 674 

analyses emphasizing the complexity of the processes related to the choice of fishing 675 

locations. For instance, the sampling process could account for the pluri-specific nature 676 

of fisheries (Bourdaud et al., 2019) and additional factors other than fish distribution could 677 

be included to explain the variability of sampling intensity in space and time (Salas and 678 

Gaertner, 2004; Haynie et al., 2009; Girardin et al., 2017). 679 

Finally, including a temporal dimension in the model and fitting a longer time series looks 680 

a fruitful research avenue. Moving to spatio-temporal modelling that would consider 681 

temporal autocorrelation in the spatial distribution may be methodologically challenging 682 

(Cameletti et al., 2013), but represents an exciting step towards a better understanding of 683 

the seasonal spatial distribution of fish resources. Indeed, commercial data are often 684 

available all along the year, when scientific surveys most often occur once or twice a year. 685 

Combining scientific and commercial data within an integrated spatio-temporal framework 686 
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built at an infra-annual time step (e.g., season, month) would allow to complement the gap 687 

of information to investigate fish spatio-temporal distribution at a finer temporal scale than 688 

what is possible using scientific data only (Hilborn and Walters, 2013; Maureaud et al., 689 

2020). It would offer new opportunities to interpret seasonal patterns of distribution (Kai et 690 

al., 2017), identify fish functional habitats such as spawning areas (Paradinas et al., 2015; 691 

Delage and Le Pape, 2016), and provide the required knowledge for protecting those 692 

habitats (Schmitten, 1999; Erisman et al., 2020). 693 
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FIGURES AND TABLES 716 
 717 

Figure 1.  Diagram of the spatial integrated model including preferential sampling for 719 
commercial data. Locations of scientific trawls do not contribute directly to the likelihood. 720 
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Figure 2.  Maps of simulated commercial sampling points obtained for three values of 722 
preferential sampling (b=0, b=1, b=3). Blue scale: values of the simulated biomass field. 723 

Dots: fishing points.  For 𝑏𝑏 = 0,the targeting metric  𝑇𝑇𝑗𝑗(𝑥𝑥) = 1 (SM 1.3). For 𝑏𝑏 = 1, 724 
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𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥

𝑇𝑇𝑗𝑗(𝑥𝑥) = 12, 𝑞𝑞50%{𝑇𝑇𝑗𝑗(𝑥𝑥)} = 0.4  . For 𝑏𝑏 = 3, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥

𝑇𝑇𝑗𝑗(𝑥𝑥) = 80, 𝑞𝑞50%{𝑇𝑇(𝑥𝑥)} =725 

0.002.    726 

  727 
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 729 
Figure 3.  Map of scientific samples (black dot) and commercial sampling distribution 730 

(red color scale – unit: fishing hours). Note that all scientific hauls last around 30 731 
minutes. Black lines - limits of the spatial domains covered by the scientific survey 732 
(Orhago and EVHOE) that delineate the study area. Left – Hake, November 2014 733 

(EVHOE; commercial data from otter bottom trawls targeting demersal species 734 
OTB_DEF). Middle – Sole, November 2017 (Orhago; commercial data from otter bottom 735 

trawls targeting demersal species OTB_DEF). Right – squid, year 2015 (EVHOE; 736 
commercial data from otter bottom trawls targeting cephalopods OTB_CEP).  737 
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 739 
Figure 4.  Performance metrics obtained for various commercial and scientific data 740 

sample size. Column: intensity of the preferential sampling in simulated data. x-axis: 5 741 
combinations of commercial and scientific sample size. ‘com’ stands for commercial, ‘sci’ 742 

stands for scientific, S stands for small sample size (50), M stands for middle sample 743 
size (400), L stands for large sample size (3000). Colors: model configurations. 744 
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Integrated_q.com: integrated model with catchability fixed to 1 for commercial data; 745 
Integrated_q.sci: integrated model with catchability fixed to 1 for scientific data. Boxplots 746 

represent the variability among the 100 replicates.  747 
  748 
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   749 

 750 

 751 
Figure 5. Performance metrics obtained in different data and model configurations. Red 752 
points: mean value. 1𝑠𝑠𝑠𝑠 column: no discrepancy between simulation and estimation. 2𝑛𝑛𝑛𝑛 753 

column: commercial data do not cover a 9 x 9 zone of the grid. 3𝑟𝑟𝑟𝑟 column: b is 754 
arbitrarily fixed to 0 in the estimation models. 4𝑡𝑡ℎ column: data simulated with a random 755 

effect 𝜂𝜂 in the sampling intensity process. In all configurations, simulations are 756 
conducted for three levels of preferential sampling (x-axis: b = 0, b = 1, b = 3). Colors: 757 
data sources used in the integrated model for inferences. Integrated_q.com: integrated 758 

model with catchability fixed with commercial data. Boxplots represent the variability 759 
among the 100 replicates. 760 

  761 
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Figure 6.  Prediction of the relative biomass for each case study. 1𝑠𝑠𝑠𝑠 column: model 763 
fitted to scientific data only; 2𝑛𝑛𝑛𝑛 column: integrated model accounting for PS; 3𝑟𝑟𝑟𝑟 764 
column: commercial-based model accounting for PS. When the model is fitted to 765 

scientific data only, relative biomass is rescaled with the relative catchability parameter 766 
estimated within the integrated model so that all maps are in the same scale.  767 

  768 
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Figure 7. Comparison of relative difference in biomass spatial predictions (calculated as 770 
(Sb_fix(x) – Sb_est(x))/Sb_est(x)) in space (left) and of total biomass (sum on the spatial 771 

domain; right) obtained with the integrated models from the 3 case studies when 772 
accounting or not for preferential sampling. b_est: PS is estimated. b_fix: PS is not 773 

accounted for.  774 
 775 
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Table 1: Simulations 776 

General simulations description 

Biomass field 
Depends on one continuous covariate (𝛤𝛤𝑆𝑆) and one random spatial effect (𝛿𝛿).                                                Simulated within a 25 x 25 grid. 
Both are simulated independently through a GRF with Matérn covariance function.  
Their range (𝜌𝜌) and marginal variance are fixed respectively to 10 and 1.  
n.b. the marginal variance quantifies the variability of the spatial process. For more details on marginal variance parameterization, see Lindgren et al. (2011). 

Scientific data Random stratified plan within 4 strata (see Figure S2.1)                         Catchability fixed to 1                         Simulated with 10% of zeroes (𝜉𝜉𝑗𝑗 = 0) 

Commercial data 

Simulated according to three PS levels (i.e. three values for 𝑏𝑏 - see Figure 2).  
- 𝑏𝑏 = 0: commercial sampling is not preferential; 
- 𝑏𝑏 = 1: preferential sampling is moderate, commercial vessels mainly target areas where fish biomass is high; 
- 𝑏𝑏 = 3: commercial sampling is highly preferential and vessels strongly target zones where biomass is high.  

𝜂𝜂 is set to 0 for Q1, Q2, Q3. For Q4, 𝜂𝜂 is set to tailor the sole case study. 
The range of 𝜂𝜂 is set to 40 (4 times the range of 𝛿𝛿), the marginal variance is set to 5 (5 times the marginal variance of 𝛿𝛿). 
Catchability fixed to 1                             Simulated with 30 % of zero when PS is null (𝜉𝜉𝑗𝑗 = −1) 

 Simulation scenarios Model configurations 

 

𝒃𝒃 Scientific 
sample size 

Commercial 
samples size 

Coverage of the 
study area 

Additional  
random effect 
in sampling 
intensity (𝜼𝜼) 

Data sources 
considered in the 

model 
PS estimated Fixed 

catchability 

Question 1: How do each data 
source contribute to inferences?   

0,1,3 50 50, 400,  3000 Full No Scientific only, 
commercial only, both 

yes Scientific or 
Commercial 

0,1,3 50, 400,  
3000 

3000 Full No Scientific only, 
commercial only, both 

yes Scientific or  
Commercial 

Question 2: How does a partial 
coverage of the study area by the 
commercial data affect the quality 
of the estimation? 

0,1,3 50 3000 No fishing in a 9x9 
cells box 

No Scientific only, 
commercial only, both 

yes Commercial 

Question 3: What is the cost of 
ignoring PS in estimation when 
sampling is preferential? 

0,1,3 50 3000 Full No Scientific only, 
commercial only, both 

no (𝑏𝑏 fixed at 
0) 

Commercial 

Question 4: How does the 
estimation perform when 
additional processes other than 
PS drive the fishing locations? 

0,1,3 50 3000 Full Yes Scientific only, 
commercial only, both 

yes Commercial 

777 
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